Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Am J Clin Pathol ; 153(6): 725-733, 2020 05 05.
Article in English | MEDLINE | ID: covidwho-2227978

ABSTRACT

OBJECTIVES: To report the methods and findings of two complete autopsies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive individuals who died in Oklahoma (United States) in March 2020. METHODS: Complete postmortem examinations were performed according to standard procedures in a negative-pressure autopsy suite/isolation room using personal protective equipment, including N95 masks, eye protection, and gowns. The diagnosis of coronavirus disease 2019 (COVID-19) was confirmed by real-time reverse transcriptase polymerase chain reaction testing on postmortem swabs. RESULTS: A 77-year-old obese man with a history of hypertension, splenectomy, and 6 days of fever and chills died while being transported for medical care. He tested positive for SARS-CoV-2 on postmortem nasopharyngeal and lung parenchymal swabs. Autopsy revealed diffuse alveolar damage and chronic inflammation and edema in the bronchial mucosa. A 42-year-old obese man with a history of myotonic dystrophy developed abdominal pain followed by fever, shortness of breath, and cough. Postmortem nasopharyngeal swab was positive for SARS-CoV-2; lung parenchymal swabs were negative. Autopsy showed acute bronchopneumonia with evidence of aspiration. Neither autopsy revealed viral inclusions, mucus plugging in airways, eosinophils, or myocarditis. CONCLUSIONS: SARS-CoV-2 testing can be performed at autopsy. Autopsy findings such as diffuse alveolar damage and airway inflammation reflect true virus-related pathology; other findings represent superimposed or unrelated processes.


Subject(s)
Autopsy , Coronavirus Infections/pathology , Lung/pathology , Pneumonia, Viral/pathology , Adult , Aged , Autopsy/instrumentation , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/standards , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Diagnosis , Humans , Hypertension/complications , Male , Myotonic Dystrophy/complications , Obesity/complications , Oklahoma , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , SARS-CoV-2
2.
Sci Transl Med ; 14(664): eabo5070, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2053107

ABSTRACT

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days after virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of profibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early antifibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.


Subject(s)
COVID-19 , Animals , Antiviral Agents , COVID-19/complications , Fibrosis , Humans , Lung/pathology , Mice , SARS-CoV-2
3.
J Virol ; 96(17): e0096722, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1986331

ABSTRACT

Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of ß-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1ß signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and ß-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of ß-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.


Subject(s)
COVID-19 , Doublecortin-Like Kinases , COVID-19/metabolism , COVID-19/pathology , Calgranulin B/metabolism , Chemokines/metabolism , Cytokines/metabolism , Doublecortin-Like Kinases/antagonists & inhibitors , Doublecortin-Like Kinases/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukocytes, Mononuclear/metabolism , Quinolones/pharmacology , SARS-CoV-2 , beta Catenin/metabolism
4.
Science translational medicine ; 2022.
Article in English | EuropePMC | ID: covidwho-1939955

ABSTRACT

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days post-virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC. After recovery from acute SARS-CoV-2 infection, mice exhibit chronic lung disease similar to some humans, allowing for testing of therapeutics. Description

5.
Clin Microbiol Infect ; 28(8): 1066-1075, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1859445

ABSTRACT

BACKGROUND: Many postmortem studies address the cardiovascular effects of COVID-19 and provide valuable information, but are limited by their small sample size. OBJECTIVES: The aim of this systematic review is to better understand the various aspects of the cardiovascular complications of COVID-19 by pooling data from a large number of autopsy studies. DATA SOURCES: We searched the online databases Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus, and Web of Science for concepts of autopsy or histopathology combined with COVID-19, published between database inception and February 2021. We also searched for unpublished manuscripts using the medRxiv services operated by Cold Spring Harbor Laboratory. STUDY ELIGIBILITY CRITERIA: Articles were considered eligible for inclusion if they reported human postmortem cardiovascular findings among individuals with a confirmed SARS coronavirus type 2 (CoV-2) infection. PARTICIPANTS: Confirmed COVID-19 patients with post-mortem cardiovascular findings. INTERVENTIONS: None. METHODS: Studies were individually assessed for risk of selection, detection, and reporting biases. The median prevalence of different autopsy findings with associated interquartile ranges (IQRs). RESULTS: This review cohort contained 50 studies including 548 hearts. The median age of the deceased was 69 years. The most prevalent acute cardiovascular findings were myocardial necrosis (median: 100.0%; IQR, 20%-100%; number of studies = 9; number of patients = 64) and myocardial oedema (median: 55.5%; IQR, 19.5%-92.5%; number of studies = 4; number of patients = 46). The median reported prevalence of extensive, focal active, and multifocal myocarditis were all 0.0%. The most prevalent chronic changes were myocyte hypertrophy (median: 69.0%; IQR, 46.8%-92.1%) and fibrosis (median: 35.0%; IQR, 35.0%-90.5%). SARS-CoV-2 was detected in the myocardium with median prevalence of 60.8% (IQR 40.4-95.6%). CONCLUSIONS: Our systematic review confirmed the high prevalence of acute and chronic cardiac pathologies in COVID-19 and SARS-CoV-2 cardiac tropism, as well as the low prevalence of myocarditis in COVID-19.


Subject(s)
COVID-19 , Myocarditis , Aged , Autopsy , Humans , Lung , Myocarditis/epidemiology , SARS-CoV-2
6.
J Pathol ; 257(4): 413-429, 2022 07.
Article in English | MEDLINE | ID: covidwho-1844201

ABSTRACT

Lung diseases carry a significant burden of morbidity and mortality worldwide. The advent of digital pathology (DP) and an increase in computational power have led to the development of artificial intelligence (AI)-based tools that can assist pathologists and pulmonologists in improving clinical workflow and patient management. While previous works have explored the advances in computational approaches for breast, prostate, and head and neck cancers, there has been a growing interest in applying these technologies to lung diseases as well. The application of AI tools on radiology images for better characterization of indeterminate lung nodules, fibrotic lung disease, and lung cancer risk stratification has been well documented. In this article, we discuss methodologies used to build AI tools in lung DP, describing the various hand-crafted and deep learning-based unsupervised feature approaches. Next, we review AI tools across a wide spectrum of lung diseases including cancer, tuberculosis, idiopathic pulmonary fibrosis, and COVID-19. We discuss the utility of novel imaging biomarkers for different types of clinical problems including quantification of biomarkers like PD-L1, lung disease diagnosis, risk stratification, and prediction of response to treatments such as immune checkpoint inhibitors. We also look briefly at some emerging applications of AI tools in lung DP such as multimodal data analysis, 3D pathology, and transplant rejection. Lastly, we discuss the future of DP-based AI tools, describing the challenges with regulatory approval, developing reimbursement models, planning clinical deployment, and addressing AI biases. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
COVID-19 , Lung Neoplasms , Artificial Intelligence , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Pathologists
7.
Int J Surg Pathol ; 30(4): 393-396, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1582644

ABSTRACT

Compared to the parental SARS-CoV-2 virus, infections by the now dominant Delta variant of SARS-CoV-2 appear to be more common and more severe in pregnant women. The need for a robust, cheap, and quick method for diagnosing placental infection by SARS-CoV-2 has thus become more acute. Here, we describe a highly sensitive and specific immunohistochemical assay for SARS-CoV-2 nucleocapsid protein for routine use in placental pathology practice.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , COVID-19/diagnosis , Female , Humans , Immunohistochemistry , Placenta/pathology , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
8.
J Med Imaging (Bellingham) ; 8(Suppl 1): 017501, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1314103

ABSTRACT

Purpose: We used computerized image analysis and machine learning approaches to characterize spatial arrangement features of the immune response from digitized autopsied H&E tissue images of the lung in coronavirus disease 2019 (COVID-19) patients. Additionally, we applied our approach to tease out potential morphometric differences from autopsies of patients who succumbed to COVID-19 versus H1N1. Approach: H&E lung whole slide images from autopsy specimens of nine COVID-19 and two H1N1 patients were computationally interrogated. 606 image patches ( ∼ 55 per patient) of 1024 × 882 pixels were extracted from the 11 autopsied patient studies. A watershed-based segmentation approach in conjunction with a machine learning classifier was employed to identify two types of nuclei families: lymphocytes and non-lymphocytes (i.e., other nucleated cells such as pneumocytes, macrophages, and neutrophils). Based off the proximity of the individual nuclei, clusters for each nuclei family were constructed. For each of the resulting clusters, a series of quantitative measurements relating to architecture and density of nuclei clusters were calculated. A receiver operating characteristics-based feature selection method, violin plots, and the t-distributed stochastic neighbor embedding algorithm were employed to study differences in immune patterns. Results: In COVID-19, the immune response consistently showed multiple small-size lymphocyte clusters, suggesting that lymphocyte response is rather modest, possibly due to lymphocytopenia. In H1N1, we found larger lymphocyte clusters that were proximal to large clusters of non-lymphocytes, a possible reflection of increased prevalence of macrophages and other immune cells. Conclusion: Our study shows the potential of computational pathology to uncover immune response features that may not be obvious by routine histopathology visual inspection.

9.
Sci Rep ; 11(1): 11130, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1246392

ABSTRACT

The sex discordance in COVID-19 outcomes has been widely recognized, with males generally faring worse than females and a potential link to sex steroids. A plausible mechanism is androgen-induced expression of TMPRSS2 and/or ACE2 in pulmonary tissues that may increase susceptibility or severity in males. This hypothesis is the subject of several clinical trials of anti-androgen therapies around the world. Here, we investigated the sex-associated TMPRSS2 and ACE2 expression in human and mouse lungs and interrogated the possibility of pharmacologic modification of their expression with anti-androgens. We found no evidence for increased TMPRSS2 expression in the lungs of males compared to females in humans or mice. Furthermore, in male mice, treatment with the androgen receptor antagonist enzalutamide did not decrease pulmonary TMPRSS2. On the other hand, ACE2 and AR expression was sexually dimorphic and higher in males than females. ACE2 was moderately suppressible with enzalutamide administration. Our work suggests that sex differences in COVID-19 outcomes attributable to viral entry are independent of TMPRSS2. Modest changes in ACE2 could account for some of the sex discordance.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Lung/drug effects , Receptors, Androgen/metabolism , Serine Endopeptidases/metabolism , Androgen Receptor Antagonists/pharmacology , Androgens , Angiotensin-Converting Enzyme 2/genetics , Animals , Benzamides/pharmacology , COVID-19/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation Sequencing , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Immunohistochemistry , Lung/metabolism , Lung/virology , Male , Mice , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Serine Endopeptidases/genetics , Smokers
10.
J Intensive Care Med ; 36(5): 604-611, 2021 May.
Article in English | MEDLINE | ID: covidwho-999444

ABSTRACT

BACKGROUND: Patients with COVID-19 and ARDS on prolonged mechanical ventilation are at risk for developing endotracheal tube (ETT) obstruction that has not been previously described in patients with ARDS due to other causes. The purpose of this report is to describe a case series of patients with COVID-19 and ARDS in which ETT occlusion resulted in significant clinical consequences and to define the pathology of the obstructing material. METHODS: Incidents of ETT occlusion during mechanical ventilation of COVID-19 patients were reported by clinicians and retrospective chart review was conducted. Statistical analysis was performed comparing event rates between COVID-19 and non-COVID 19 patients on mechanical ventilation over the predefined period. Specimens were collected and submitted for pathological examination. FINDINGS: Eleven COVID-19 patients experienced endotracheal tube occlusion over a period of 2 months. Average age was 69 (14.3, range 33-85) years. Mean APACHE III score was 73.6 (17.3). All patients had AKI and cytokine storm. Nine exhibited biomarkers for hypercoagulability. Average days on mechanical ventilation before intervention for ETT occlusion was 14 (5.18) days (range of 9 to 23 days). Five patients were discharged from the ICU, and 4 expired. Average documented airway resistance on admission was 14.2 (3.0) cm H2O/L/sec. Airway resistance before tube exchange was 28.1 (8.0) cm H2O /L/sec. No similar events of endotracheal tube occlusion were identified in non-COVID patients on mechanical ventilation during the same time period. Microscopically, the material consisted of mucin admixed with necrotic cell debris, variable numbers of degenerated inflammatory cells, oral contaminants and red blood cells. INTERPRETATION: Patients with COVID-19 and ARDS on prolonged mechanical ventilation are at risk for developing ETT obstruction due to deposition of a thick, tenacious material within the tube that consists primarily of mucin and cellular debris. Clinicians should be aware of this dangerous but treatable complication.


Subject(s)
Airway Obstruction , COVID-19/complications , Intubation, Intratracheal , Respiration, Artificial , Respiratory Distress Syndrome , APACHE , Aged , Airway Obstruction/etiology , Airway Obstruction/pathology , Airway Obstruction/therapy , COVID-19/epidemiology , COVID-19/therapy , Duration of Therapy , Equipment Failure/statistics & numerical data , Female , Humans , Intubation, Intratracheal/adverse effects , Intubation, Intratracheal/instrumentation , Male , Mortality , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Retreatment/methods , Retreatment/statistics & numerical data , Retrospective Studies , SARS-CoV-2 , Treatment Outcome , United States/epidemiology
11.
Am J Clin Pathol ; 155(4): 506-514, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-975195

ABSTRACT

OBJECTIVES: Current knowledge of the pulmonary pathology of coronavirus disease 2019 (COVID-19) is based largely on postmortem studies. In most, the interval between disease onset and death is relatively short (<1 month). Information regarding lung pathology in patients who survive for longer periods is scant. We describe the pathology in three patients with severe COVID-19 who underwent antemortem examination of lung tissue at least 8 weeks after initial diagnosis. METHODS: We conducted a retrospective case series. RESULTS: The first patient developed acute respiratory failure and was started on extracorporeal membrane oxygenation (ECMO) on day 21, with subsequent hemothorax. Debridement (day 38) showed extensive lung infarction with diffuse alveolar damage and Candida overgrowth. The second patient developed acute respiratory failure requiring mechanical ventilation that did not improve despite ECMO. Surgical lung biopsy on day 74 showed diffuse interstitial fibrosis with focal microscopic honeycomb change. The third patient also required ECMO and underwent bilateral lung transplantation on day 126. The explanted lungs showed diffuse interstitial fibrosis with focal microscopic honeycomb change. CONCLUSIONS: This series provides histologic confirmation that complications of COVID-19 after 8 weeks to 4 months of severe disease include lung infarction and diffuse interstitial fibrosis.


Subject(s)
COVID-19 Testing/methods , COVID-19/pathology , Lung/pathology , Severity of Illness Index , Biopsy , COVID-19/diagnosis , COVID-19/therapy , Disease Progression , Female , Humans , Lung/surgery , Lung Transplantation , Male , Middle Aged , Time Factors
12.
Arch Pathol Lab Med ; 144(9): 1027-1036, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-771247

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) has rapidly disrupted traditional modes of operation in health care and education. In March 2020, institutions in the United States began to implement a range of policies to discourage direct contact and encourage social distancing. These measures have placed us in an unprecedented position where education can no longer occur at close quarters-most notably, around a multiheaded microscope-but must instead continue at a distance. This guide is intended to be a resource for pathologists and pathologists-in-training who wish to leverage technology to continue collaboration, teaching, and education in this era. The article is focused mainly on anatomic pathology; however, the technologies easily lend themselves to clinical pathology education as well. Our aim is to provide curated lists of various online resources that can be used for virtual learning in pathology, provide tips and tricks, and share our personal experience with these technologies. The lists include videoconferencing platforms; pathology Web sites; free online educational resources, including social media; and whole slide imaging collections. We are currently living through a unique situation without a precedent or guidebook, and we hope that this guide will enable the community of pathology educators worldwide to embrace the opportunities that 21st century technology provides.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Education, Distance/methods , Education, Medical, Graduate/methods , Pandemics/prevention & control , Pathology/education , Pneumonia, Viral/prevention & control , COVID-19 , Humans , SARS-CoV-2 , United States
13.
Front Public Health ; 8: 383, 2020.
Article in English | MEDLINE | ID: covidwho-732828

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that is responsible for the 2019-2020 pandemic. In this comprehensive review, we discuss the current published literature surrounding the SARS-CoV-2 virus. We examine the fundamental concepts including the origin, virology, pathogenesis, clinical manifestations, diagnosis, laboratory, radiology, and histopathologic findings, complications, and treatment. Given that much of the information has been extrapolated from what we know about other coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), we identify and provide insight into controversies and research gaps for the current pandemic to assist with future research ideas. Finally, we discuss the global response to the coronavirus disease-2019 (COVID-19) pandemic and provide thoughts regarding lessons for future pandemics.


Subject(s)
COVID-19/diagnosis , COVID-19/pathology , COVID-19 Testing , Humans , Pandemics , RNA, Viral/isolation & purification , SARS-CoV-2/pathogenicity
14.
Diagn Pathol ; 15(1): 103, 2020 Aug 14.
Article in English | MEDLINE | ID: covidwho-713869

ABSTRACT

BACKGROUND: The world is currently witnessing a major devastating pandemic of Coronavirus disease-2019 (COVID-19). This disease is caused by a novel coronavirus named Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). It primarily affects the respiratory tract and particularly the lungs. The virus enters the cell by attaching its spike-like surface projections to the angiotensin-converting enzyme-2 (ACE-2) expressed in various tissues. Though the majority of symptomatic patients have mild flu-like symptoms, a significant minority develop severe lung injury with acute respiratory distress syndrome (ARDS), leading to considerable morbidity and mortality. Elderly patients with previous cardiovascular comorbidities are particularly susceptible to severe clinical manifestations. BODY: Currently, our limited knowledge of the pathologic findings is based on post-mortem biopsies, a few limited autopsies, and very few complete autopsies. From these reports, we know that the virus can be found in various organs but the most striking tissue damage involves the lungs resulting almost always in diffuse alveolar damage with interstitial edema, capillary congestion, and occasional interstitial lymphocytosis, causing hypoxia, multiorgan failure, and death. A few pathology studies have also reported intravascular microthrombi and pulmonary thrombembolism. Although the clinical presentation of this disease is fairly well characterized, knowledge of the pathologic aspects remains comparatively limited. CONCLUSION: In this review, we discuss clinical, pathologic, and genomic features of COVID-19, review current hypotheses regarding the pathogenesis, and briefly discuss the clinical characteristics. We also compare the salient features of COVID-19 with other coronavirus-related illnesses that have posed significant public health issues in the past, including SARS and the Middle East Respiratory Syndrome (MERS).


Subject(s)
Betacoronavirus , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Inflammation/pathology , Inflammation/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
15.
Lab Invest ; 100(11): 1485-1489, 2020 11.
Article in English | MEDLINE | ID: covidwho-638974

ABSTRACT

Coronavirus Disease-19 (COVID-19), caused by the coronavirus SARS-CoV-2, was initially recognized in Wuhan, China and subsequently spread to all continents. The disease primarily affects the lower respiratory system, but may involve other organs and systems. Histopathologic evaluation of tissue from affected patients is crucial for diagnostic purposes, but also for advancing our understanding of the disease. For that reason, we developed immunohistochemical (IHC) and in situ hybridization (ISH) assays for detection of the. virus. A total of eight autopsy lungs, one placenta, and ten kidney biopsies from COVID-19 patients were stained with a panel of commercially available antibodies for IHC and commercially available RNA probes for ISH. Similarly, autopsy lungs, placentas and renal biopsies from non-COVID-19 patients were stained with the same antibodies and probes. All eight lungs and the placenta from COVID-19 patients stained positive by IHC and ISH, while the kidney biopsies stained negative by both methodologies. As expected, all specimens from non-COVID-19 patients were IHC and ISH negative. These two assays represent a sensitive and specific method for detecting the virus in tissue samples. We provide the protocols and the list of commercially available antibodies and probes for these assays, so they can be readily implemented in pathology laboratories and medical examiner offices for diagnostic and research purposes.


Subject(s)
Betacoronavirus/isolation & purification , Immunohistochemistry/methods , In Situ Hybridization/methods , Female , Humans , Indicators and Reagents , Kidney/virology , Lung/virology , Paraffin Embedding , Placenta/virology , Pregnancy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL